
AD-A237 156
1 June 1991 Final

SLAYING THE SOFTWARE DRAGON ... A Look at How
Software Engineering, the Ada Programming Language
and Process Maturity Are Changing Software Development n/a

Col David R. Dick

Hq USAF/SCX
Washington D. C. 20330 n/a

The Armed Forces Communications and Electronics
Association
International Headquarters n/a
4400 Fair Lakes Court
Fairfax, Va 22033-3899

Final project paper for AFCEA Senior Fellowship

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
IS UNLIMITED A

The cost of software today consumes over ten percent of the DoD
budget. Software costs, complexity, and size continue to rise
because of the ever increasing dependence of weapons and general
purpose systems on computers. Software engineering, the Ada
programming language, and efforts to determine the performance and
risk of software development organizations by measuring process
maturity represent key initiatives by the DoD to improve the quality,
reliability, and maintainability of the software DoD buys. This
study examines and describes each of these areas based on current
literature and interviews with officers of 37 companies engaged
in software development for command, control, and communications
systems.

70
Software engineering; Ada programming language;
Process maturity; Software process maturity model n/a

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

'/'

"SLAYING THE SOFTWARE DRAGON"

A Look at How Software Engineering, the Ada Programming Language,
and Process Maturity Are Changing Software Development.

Col David R. Dick, USAF
Senior Fellow

The Armed Forces Communications and Electronics Association

June 1, 1991

91-02423

91 6 8 01

I

ABSTRACT

The cost of software today consumes over ten percent of the

DoD budget. Software costs, complexity, and size continue to

rise because of the ever increasing dependence of weapons and

general purpose systems on computers. Software engineering, the

Ada programming language, and efforts to determine the

performance and risk of software development organizations by

measuring process maturity represent key initiatives by the to

improve the quality, reliability, and maintainability of the

software DoD buys. This study examines and describes each of

these areas based on current literature and interviews with

officers of 37 companies engaged in software development for

command, control, and communications systems.

ii

TABLE OF CONTENTS

ABSTRACT .. ii

TABLE OF FIGURES .. v

CHAPTER 1 - INTRODUCTION 1

The First "Software War" 1
Software Costs ... 3
The Software Crisis 4
DoD Initiatives to Improve Software Development 5
The Study ... 6

CHAPTER 2 - METHODOLOGY 8

CHAPTER 3 - SOFTWARE ENGINEERING 10

Software Engineering Defined 11
The "Software Problem" 12
The "Engineering" in Software Engineering 15
Elements, Goals, and Principles

of Software Engineering16
The Importance of Requirements Definition 18

CHAPTER 4 - ADA .. 22

Development of the Ada Programming Language 22
Ada is the Law .. 24
The DoD Mandate for Ada 25
Difficulties Bringing Ada On-Board 26
Renewed Commitment by DoD 27
Other Recent Changes 28
Industry Acceptance 29
Where is Ada Going? I
Cultural Influences 32
The Future .. 35

CHAPTER 5 - PROCESS MATURITY 37

Software Process and Process Management 38
The SEI Software Process Maturity Model 39
Measuring Maturity and Process Improvement 42
The Software Process Assessment 43
The Software Capability Evaluation 44
Results of Process Measurement 46
Cultural Factors in Process Improvement 47

iii

TABLE OF CONTENTS (CONT)

CHAPTER 6 - SUMMARY/OBSERVATIONS............................... 49

A New Era.......................................49
Education in Software Engineering and Ada is Key..........50
Debate Over Ada Continues................................. 52
Conclusion... 54

APPENDIX 1 - QUESTIONS.. 56

APPENDIX 2 - SOFTWARE ENGINEERING PRINCIPLES.................. 60

BIBLIOGRAPHY... 61

iv

t

TABLE OF FIGURES

FIGURE 1: Software Complexity Growth 2

FIGURE 2: Comparison of Software to Hardware Costs

in Computer Systems 4

FIGURE 3: Classic "Waterfall" Life Cycle 14

FIGURE 4: The Impact of Change 15

FIGURE 5: Evolution of Software Engineering 16

FIGURE 6: Key Elements of Software Engineering 17

FIGURE 7: Importance of Requirements Definition 19

FIGURE 8: Boehm's Spiral Life Cycle Model 20

FIGURE 9: Growth of Validated Compilers 29

FIGURE 10: Distribution of Resources Related to Effort 34

FIGURE 11: SEI Software Process Maturity Model 40

FIGURE 12: Software Process Assessments vs. Software
Capability Evaluations 43

FIGURE 13: The Software Process Improvement Cycle 47

v

Chapter 1
INTRODUCTION

"Software is like entropy. It is difficult to grasp,
weighs nothing, and obeys the Second Law of Thermodynamics;

it always increases."1

Readers of this paper are probably well aware of the degree

that computers and software have become the staples of modern

society. Virtually everything we touch, do, or imagine is

improved by the magic of computers. But for many, underlying

this phenomenon is the realm of software; unseen, untouched, and

often misunderstood. Software carries great assumptions: assumed

to always work, to cost little, and to be capable of doing almost

anything the capacity of the computer will allow. The reality

is, of course, different.

The First "Software War"

Within the Department of Defense (DoD) the growth of

computers to support increasing complexity and effectiveness of

weapons, command and control, communications, logistics,

administrative, and a myriad of other systems was vividly

displayed during Desert Shield/Desert Storm. In an interview

with Defense News, Lieutenant General Billy Thomas, Deputy

Commander for Research, Development, and Acquisition, Army

'Norman R. A. Augustine, Augustine's Laws, New York: Viking

Penguin Inc., 1986, p 118.

1

SOFTWARE COMPLEXITY GROWTH
3.5

AT FAir Force ASD Systems3.0

On-Board Software

2.5 8-8

On-Board 20

Memory
1.5

(Mwords) F-16 C/D

1.0

B-1A

0.5

F-Ill6
F-111

0.0

1965 1970 1975 1980 1985 1990
SOURCE:. P.S. Babl, , Military Comput,. Conf.rence YEA R S

Figure 1

Material Command, called Desert Storm our first software war and

said that "software is the crux of our weapon systems, and

becoming more so." He further pointed out that unless the DoD

devotes more attention to software development, the US military

will find itself against adversaries with smarter weapons.

These gains are a result of overwhelming improvements in

computer hardware technology and tremendous increases in the size

and complexity of software. An often used but nevertheless

2"Army Encourages Software Integration," Defense News, April

29, 1991, p 10.

2

appropriate example is the difference between the Vietnam era F-4

aircraft with virtually no software on board to an F-16D with

about 236,000 lines of code (Figure 1). This growth has in turn

raised concerns about the reliability, quality, and cost of the

software the DoD buys.

Software Costs

The DoD's software costs in 1990 were estimated to be $31B,

or about ten percent of the entire DoD budget. This cost has

grown from about $9B in 1985 and approximately $3B in 1974. The

1990 figure represents almost one third of the total software

revenue in the United States, making the military the nation's

largest consumer of software.3

Software costs have risen disproportionally as a factor in

system procurement. Ten years ago Barry Boehm, in his book

Software Engineering Economics, stated, ". ..today the computer

system that we buy as 'hardware' has generally cost the vendor

about three times as much for the software as it has for the

hardware.",4 This trend continues, except that the relationship

3From a speech by Edward L. Lafferty, Mitre Technical
Director, to the Tri-Ada 90 Conference, Baltimore, Maryland,
December 4, 1990.

4Barry Boehm, Software Engineering Economics (Prentice-Hall,
Inc), 1981, p 17.

3

PERCENTAGE COMPUTER RESOURCES
100

80 HARDWARE
80

60

40

20 SOFTWAPE

1973 1980 1985 1990
BASED ON DATA FROM

"AEROSPACE/DEFE NSE RESEARCH
REPORT,' SALOMON BROTHERS
INC., SEPT 1987.

Figure 2: Comparison of Software to Hardware Costs in Computer
Systems

is even more pronounced as seen in Figure 2.5

The Software Crisis

DoD's growing investment in software occurred at the same

time a "software crisis" has been acknowledged to exist in this

country. This crisis reflected problems that have contributed to

5Taken from a chart in AFCEA's Professional Development Center
Course 139D, "Management of Ada-Based Systems."

4

major cost and schedule overruns and crisis characterized by the

virtual shutdown of AT&T's long distance network on January 15,

1990. Software problems have been an area of intense study by

the Congress, the DoD, and industry.6 Recently, a series of

articles in the Washington Post 7 described this nation's

insatiable hunger for software in everything from medical

equipment and automobiles to military systems. One of the

conclusions from the series was that our ability to produce the

amount and quality of software needed is essentially stagnant.8

DoD Initiatives to Improve Software Development

DoD has taken a number of initiatives to improve the

software acquisition process and force economies on software

throughout its life cycle. The principle initiative within DoD

itself was the development of the Ada programming language.

Designed initially as the language of choice for all critical

6Over 30 studies have been written on the "Software Crisis."
Two of these are especially valuable in understanding many of the
problems associated with software as it applies to the DoD. These
studies are the Report of the Defense Science Board Task Force on
Military Software, Defense Science Board/Office of the Under
Secretary of Defense for Acquisition, September 1987, and Bugs in
the Program, Problems in Federal Government Computer Software
Development and Regulation, Committee on Science, Space, and
Technology, U.S. House of Representatives, Subcommittee on
Investigations and Oversight, September 1989.

7"The Software Snarl," The Washington Post, December 9 - 12,
1990.

8Evelyn Richards, "Society's Demands Push Software To Upper
Limits," The Washington Post, December 9, 1990, p A24.

5

weapon system software, its use has been expanded as the

preferred language for virtually all software applications.

Associated initiatives included the establishment of the Ada

Joint Program Office (AJPO), the Software Engineering Institute

(SEI), and the Software Technology for Adaptable, Reliable

Systems (STARS) Joint Program Office. The AJPO, as its name

implies, was established to manage the introduction of Ada and,

in particular, effect technology transfer into major Defense

programs through the use of Ada. The STARS program and the SEI

were created to advance software engineering technolcgy and

accelerate the use of software engineering techniques in the

development of DoD systems.

The Study

This paper focuses on three areas; software engineering,

Ada, and the maturity of the software development process that

are central to these initiatives. These subjects are

interrelated and cannot be treated independently. They must be

seen as a set of interlocking principles and techniques that have

evolved to make software and systems that are more reliable, cost

effective, and responsive to the needs of the ultimate user.

The subject of software engineering provides a framework

that describes much of the effort underway to move the business

of software development from what has long been considered a

"black art" to a structured process governed by the principles of

6

science. This discussion also helps understand the Ada

programming language which was created to support and facilitate

software engineering principles.

Ada is examined first in terms of the central features of

the language. But, most importantly, its acceptance and use is

explored in light of increased pressure by the DoD and Congress

to mandate its use for all computer software developed for the

DoD barring certain exceptions.

Finally, process maturity as it is defined and measured by

the SEI ties the picture together. The SEI model of process

maturity and the determination of a software organization's

placement and improvement in the context of the model provide a

look at how facets of total quality management (TQM) are being

introduced into software development. The discussion of process

maturity measurement is particularly relevant because it is

beginning to be widely used as a determinant of risk and

performance in the evaluation and award of competitive

procurement contracts.

The paper examines these subjects and the results of DoD's

initiatives. The views of many in industry and government

provide the assessment. The paper is intended to provide someone

not familiar with the issues and background of software

development an understanding of some of the problems and

management techniques.

7

Chapter 2
METHODOLOGY

The study was conducted in two phases. The first was a

review of much of the available literature on software

engineering and Ada, including technical reports, articles,

books, and policy documents from OSD and the services. A

bibliography is contained at the end of this paper.

The second phase, and by far the most important and unique,

consisted of a series of interviews with 37 companies who are

major suppliers of software for the DoD, primarily in

applications supporting telecommunications and command and

control systems. A few of the interviews also examined software

developed for commercial purposes. These interviews provided

information in three areas of concern:

(1) Software engineering practices and use within the

company.

(2) How the DoD mandate for the use of the Ada programming

language helps or hinders software development and what is

the future for Ada.

(3) Efforts within the company to improve the process of

software development.

A list of questions was drawn up to guide the interview

process and is contained in Appendix 1. However, the interviews

were generally unstructured, information was collected on any

perspective that the individual being interviewed felt needed to

be aired. Those interviewed were generally at the project

8

manager level, although, they ranged from senior programmer to

vice president.

9!

Chapter 3
SOFTWARE ENGINEERING

"The tar pit of software engineering will continue to be sticky
for a long time to come. One can expect the human race to
continue attempting systems just within or just beyond our reach;
and software systems are perhaps the most intricate and complex
of man's handiwork. The management of this complex craft will
demand our best use of new languages and systems, our best doses
of common sense, and a God-given humility to recognize our
fallibility and limitations."

Frederick P. Brooks, Jr
The Mythical Man Month9

During the interviews for this project, those interviewed

repeatedly pointed to improved quality and reliability of

software as the most important factors in their company's

software development. In every case but one, these improvements

were attributed to the adaption of software engineering concepts.

When asked to describe which concepts were the most important,

several answers were given. For some, software engineering was a

standardized process involving "best current practices" or

checklists that promote standards in coding, naming conventions,

documentation, and tool sets. In other cases, software

engineering meant peer reviews, seminars and courses in software

engineering, and the collection of metrics to better define and

assess the process of software development. The common theme

throughout was that those who practiced software engineering felt

their company's credibility in the marketplace was improved

9Frederick P. Brooks, Jr, The Mythical Man-Month, Addison-

Wesley Publishing Co, 1975.

10

because they not only produced better quality software, but were

also more responsive to their customers, and over the long term

lowered costs. For most, the introduction of software

engineering had occurred within the last two to five years.

Software Engineering Defined

Software engineering is not new. It has existed as an

identifiable discipline for about twenty years.10 The term was

originally coined to focus attention of a NATO workshop on

software production in 1968. Since then, it has come to identify

management practices, software tools, and design activities for

software development. The Society of International Electronic

and Electrical Engineers (IEEE) defines software engineering as a

systematic approach to the development, operation, maintenance,

and retirement of software." Another definition put forth by a

leading expert on software development, Dr. Barry Boehm, argues

that software engineering must also accommodate human and

economic concerns as well as programming mechanics. 2

"Mfary Shaw, "Prospect for an Engineering Discipline of
Software," IEEE Software, November 1990, p 15.

"Ted G. Lewis and Paul W. Oman, "The Challenges of Software
Development," IEEE Software, November 1990, p 10. In contrast to
its definition of software engineering, IEEE defines software
development as the process by which user needs are transformed in
design, design is implemented in code, and code is tested,
documented, and certified for use.

S2Barry W. Boehm, Software Engineering Economics, (Prentice-
Hall, Inc.), 1981, p 10.

11

For the uninitiated, the concept of software engineering

embodies a confusing mix of abstract ideas and terms that are

applied across a continuum stretching from requirements

definition to software maintenance.

The "Software Problem"

The advancement of software engineering is largely due to

the increases in the size and complexity of software. These

changes in size and complexity have made the problems inherent in

the software development and support processes much more evident.

The nature of these software related problems are economic,

managerial, and technical, and they involve the production,

maintenance, and use of systems. A view that these issues can be

lumped together as the "software problem" and dealt with as a

single issue is overly simplistic and has been proven not to

work. 13

Software development for most of the approximately forty

years that it has been practiced has been considered akin to an

art form. The building of software is basically a product of the

human mind. It is a labor intensive endeavor; one that does not

reduce easily to tools, mass production, or standard parts.
14

Traditionally, a person trained in writing software was

13Mary Shaw, Beyond ProQramming-in-the LarQe, SEI-86-TM-6, May
86, p 4-6

14Evelyn Richards, "Society's Demands Push Software To Upper
Limits," The Washington Post, December 9, 1990, p A24.

12

considered capable of producing code for any project no matter

how large or complex. This situation has been compared to a

person who recently built a dog house in his back yard being

considered equally capable of building a custom house or for that

matter a skyscraper.
5

Software today is commonly in the hundreds of thousands or

millions of lines of code with disparate parts written by

hundreds of people often over a period extending for several

years. The real complexity comes in melding these parts

together. Peop!-- with little understanding or knowledge of how

other parts were developed must make the whole program work

within a specified schedule and cost.

This complexity fuels a key concern expressed during many of

the interviews. Government and corporate management are often

baffid about how best to manage and create structure for

something that can not be seen or touched. A classic example is

use of the waterfall model to define the software life cycle

(Figure 3). This approach has been traditionally employed in the

development of computer systems. It is successful for hardware

development. The focus of the waterfall model is on

documentation. Design milestones assume there is a clear

understanding of the user's requirements at the outset of a

program. However, often in the development of systems where

software plays a significant role the requirements are not well

'5This comparison is used by Eileen Quann in her course
Management of Ada Based Systems, AFCEA Professional Development
Center, Course # 139.

13

Re q u Ire me Classic "Waterfall" Life Cycle
Validation #

Fofiwuer

unerto Feureqently th5srdentko hth at o

does he haatnaprcainowhttecablybig

p vu Prelim inarty o

p tem.
Validation

drequiements

Test
~Test and

I Operations and !

Maintenance

Source: Boehm, 1976 Revalidalion

Figjure 3

understood. Frequently, the user doesn'tt kos problhe wants nor

does he have an appreciation of what the capability being

provided can do, but is counting on the flexibility software

provides to evolve the system.

The need to "get productive" and demonstrate progress pushes

developers to start coding before requirements and design are

adequately defined. The result is that most problems are not

discovered until the testing phase near the end of the program.

14

This is cited as a leading reason software is late and over

cost.16 It can cost six to one hundred times more to fix errors

found during the testing and maintenance phases of a program than

during the requirements definition and design phases.'
7

The ,,Engineering" in Software Engineering

Software engineering brings science to the art of software

development in the same sense that Mary Shaw describes any

accepted engineering practice as, "emerging from the commercial

practice by exploiting the results of a companion science."'
18

Her depiction of this evolution is shown in Figure 5. Many argue

16U.S. Congress, House, Committee on Science, Space, and
Technology, Subcommittee on Investigations and Oversight, Bugs in
the Program Problems in Federal Government Computer Software
Development and Regulation, September 1989, p 9.

7 From a briefing by Eugene Bingue to the Software Technology
Support Center, Hill AFB, Utah, conference "The New Era - Software
Technology," 16 - 17 April 1991, Salt Lake City, Utah (see
accompanying figure). These estimates have been supported by
several of the interviews with corporate
managers. THE IMPACT OF CHANGE

RELATIVE COST

SOFTWARE

CHANGE

DEFINITION DEVELOPMENT MAINTENANCE

18Mary Shaw, Prospects for an Engineering Discipline of

Software, CMU/SEI-90-TR-20, September 1990, p 14.

15

1165-70: ALGORITHMS,
DATA STRUCTURES

SCIENCE
PROFESSIONAL

PIRODUCTION MENGINEEING

F: o COMMERCIAL e En50LATED EXAMPLEerNLr
' (ALGORITHMS, DATA

[STRUCTURES, COMPILER

C R1AFIT 190S OTA ECONSTUCTIONI

DEVELOPMENT

METHODOLOGiES

Figure 5: Evolution of Software Engineering

that software engineering is far from being a true engineering

discipline because the scientific precepts are not yet mature.

Shaw agrees, stating that software engineering is in some cases

craft and in some cases commercial practice. But she also claims

that science is beginning to contribute and in isolated cases

professional engineering is taking place.'9 Another industry

expert further explained that the change from art to science has

become popularized but that in his opinion most software

development is still about 80% artistic.2"

Elements, Goals, and Principles of Software Engineering

Software engineering consists of elements, goals, and

' 9ibid, p 16.

2 Discussion with BGen Dennis Brown (USAF, Ret), Vice
President, Information Systems Group, Martin Marietta Corporation.

16

principles that must be used throughout the software life cycle

if the end game of reliable, maintainable systems is to be

realized. Each of the elements of software engineering as shown

in Figure 6 must be in balance.21 Too often, according to many

of those interviewed, the primary focus is on picking or

developing tools before the methodology had been sorted out when

ideally the

reverse should be
KEY ELEMENTS OF SOFTWARE ENGINEERING

true.

Reliability, METHODS *HOW TO'S" TOOLS PROCEDURES

PROJECT PLANNING MANAGEMENT SEQUENCE OF
efficiency, ESTIMATION ESTIMATING DELIVERABLES

SCHEDULING SCHEDULING CONTROLS
REQUIREMENTS ANALYSIS REQUIREMENTS INSPECTIONmodifiability, and DESIGN DESIGN REVIEWS
CODING DEVELOPMENT GUIDELINES

understandability TESTING TEST STANDARDS
MAINTENANCE DOCUMENTATION

are the goals of MEASUREMENT CONFIGURATION
CRITERIA FOR QUALITY MANAGEMENT

software

engineering.

SOFTWARE ENGINEERINGReliability means
SOUJRCE PDC COURSE # 3g

MANAGEMENT OF ADA BASED SVSTEMS
that software will

Figure 6
perform correctly

and consistently for all input data under all circumstances. If

external problems occur, reliable software will detect the

problem and degrade gracefully. Efficient software will optimize

the use of time and space. Response will occur within the

required time limits and the software fits within memory

21Adopted from a lecture by Eileen Quann in AFCEA Professional

Development Center Course #139, "Management of Ada Based Systems."

17

constraints. Software needs to be as efficient as required to do

the job, not as efficient as possible. Modifiability is the

ability to make changes that have localized or controlled effect.

High modifiability is the result of a consistent, well organized

design and controlled complexity. It results in systems that are

easier to integrate and test, easier to maintain, and easier to

enhance. Understandability relates to the clarity and logic of

the software that comes from consistent techniques for design and

documentation. Understandability results in systems that are

easier to code, easier to verify, and easier to maintain.

Software engineering goals are achieved through a set of

principles which contribute to the effective production of

software. These principles include: abstraction, information

hiding, modularity, localization, uniformity, completeness, and

confirmability. Definitions of each can be found in Appendix 2.

The Importance of Requirements Definition

The application of these principles focuses attention on

requirements definition as a fundamental aspect of development.

In the three basic phases of the software life cycle; definition,

development, and maintenance, the first, or definition phase,

often determines the success and cost of the next two. One study

showed that sixty to eighty percent of the problems in software

systems' design were attributed to inaccurate requirement3

18

definitions.22 The importance of requirements definition as it

translates into system design was summarized by one industry

executive in Figure 7.23 A commonly held view in industry is

GOOD SYSTEM DESIGN + GOOD PROGRAMMING : GREAT PRODUCT

GOOD SYSTEM DESIGN + BAD PROGRAMMING - GOOD PRODUCT

POOR SYSTEM DESIGN GOOD PROGRAMMING - BAD PRODUCT

POOR SYSTEM DESIGN 4 BAD PROGRAMMING : TERRIBLE PRODUCT

Figure 7: Importance of Requirements Definition

that too often solutions are attempted when the problems are not

understood.

Almost universally, an iterative design process is necessary

to crystalize what the true system requirements are. Iterative

design, which includes techniques of rapid prototyping and

evolutionary acquisition, provides a user the opportunity to see

and use versions of the final product and make changes as the

system evolves throughout its development. The Spiral Life Cycle

Model created by Barry Boehm is a popular example of this

22 3. H. Boar, Application Prototyping: A Requirements
Definition Strategy for the 80's, 1984

2 3The executive, Bob Rowe from the Boeing Aerospace
Corporation, said he keeps this chart on his wall, author unknown,
to constantly remind himself and anyone who walks in the importance
of requirements analysis and up-front systems engineering.

19

approach (Figure 8) .24 Several industry and government

CUMULATIVE
COST

PROGRESS

DETERMINE IDENTIFY, RESOLVE RISKS
OBJECTIVES .
ALT ERAN ATIVES RIS
CONSTRAINTS A S I

ANALYSIS

~RISK
ANALY5SI

ANAL YSIS OPEATINA

COMM ROTOTYPE ROTOTYPE PROTOTYPE PROTOTYPE
REVIEW ----

PART? ION EQUIREMENTS CONCEPT - - - ..5 UL IONS, MODELS, BENCHMARKS
PLAN OF

LIFE CYCLE OPERATIONS SOFTWARE.

PLAN REGUIREM TSPYL T SOFTWAURE

SOFTWARE DETAILED
DEVELOPMENT PRODUCT DESIG N

Figure~ ~ ~T : Nohm SprlLfSyl oe

'a 20

PLAN REQ UIR EME NTS i DESIGN _

TEGRTIO BA O
N T I IN EGRAION

AND TEST DOESIGN VALIDATIO N UNIT/

AND TE5T

'ACCE PTAN CE'

I T EST i

PLAN NEXT PHASES MP L E MENTATI 10 N DVE LOP, VERIFY
i , NEXT LEVEL PRODUCT

Figure 8: Boehm's spiral Life Cycle Model

sponsored studies have concluded that an evolutionary approach to

both the requirements definition phase and the acquisition phase

24 Barry Boehm, "A Spiral Model of Software Development and
Enhancement", IEEE Computer, May 1988, p 61-72.

20

provides a greater probability of fielding a useful command and

control capability sooner and with a higher degree of user

satisfaction than if procured via a traditional (waterfall)

approach5 . Many of those interviewed stated that iterative

development of requirements, testing of those requirements, and

the construction of systems by incremental development have only

recently begun to see wide spread acceptance26.

Good software engineering and requirements definition are

independent of the programming language used. However, one

language, the Ada programming language, was specifically designed

around software engineering constructs. As such Ada forces more

effort to be expended in the requirements definition and design

phases of a program, as will be seen in the next chapter.

25j. H. Garner, LCDR, Evolutionary Acquisition Revisited, A C2
Industry Study, Manuscript, AFCEA, January 15, 1991.

26Defense Science Board/Office of the Under Secretary of
Defense for Acquisition, Report of the Defense Science Board Task
Force on Military Software, September 1987, p 33.

21

Chapter 4
ADA

"Now the whole earth used only one language, with few words....
Then they said, "Come, let us build ourselves a city with a tower
whose top shall reach the heavens (thus making a name for
ourselves), so that we may not be scattered all over the earth.
"The Lord said, 'They are just one people, and they all have the
same language. If this is what they can do as a beginning, then
nothing that they resolve to do will be impossible for them.
Come, let us go down, and there make such a babble of their
language that they will not understand one another's speech.'
Thus the Lord dispersed them from there all over the earth, so
that they had to stop building the city."

Genesis 11:1-8

The first thing one learns when studying Ada is that for its

supporters and detractors alike, arguments for its use take on

almost religious overtones. It is not that Ada is viewed as a

good or bad technology, for it is almost universally agreed that

Ada is a powerful programming language whose constructs of

reusability, portability, information hiding, and strong typing

superbly support the introduction of software engineering for

most software development. The questions are whether Ada yields

the cost savings it was designed to do, whether it is the "one"

programming language for all uses as some proponents argue, and

whether DoD should put all of its software eggs in one basket as

many feel is happening.

Development of the Ada Programming Language

Ada's development was motivated by the aforementioned

software crisis and the move toward larger, more complex systems.

22

It was developed by the DoD in the late 1970s to reduce software

life cycle costs resulting from the proliferation of more than

300 languages27 that were then in use. The costs of trying to

develop and maintain software over a life cycle that could

stretch beyond twenty years had become uncontrollable. Not only

were a vast variety of tools and expertise required, but also

substantial difficulties were encountered trying to move

application programs between computer systems.

Ada was built to be reliable, maintainable, and

efficient.28 Reliability means that errors are caught before

the program is run (accomplished through compiler and interface

checking), that it encourages good programming practices, and

that it makes for ease of reuse. Maintainability is primarily

due to the ease with which Ada can be read (even though it is

harder to write). Finally, efficiency is tied to how quickly a

program compiles and runs.

Ada is much more than another programming language, it is a

robust and proven technology especially designed for well

engineered software systems. The language supports modern

software engineering principles, risk reduction, and several

development paradigms including functionally oriented and object

27GAO/IMTEC-89-9, ProgramminQ Language Status, Costs and Issues
Associated with Defense's Implementation of Ada, March 1989, p 2.
Other sources have put this number as high as 450 languages and
dialects, of which about half were assembly languages
(Understanding the Adoption of Ada: Results of an Industry Survey
by M. Carlson and G. N. Smith, SEI-90-SR-10, May 1990, p 25).

28 From AFCEA Professional Development Center Course #139,

Management of Ada Based Systems.

23

oriented design methodologies. The language has proven to be

suitable for many dissimilar application areas, ranging from

commercial data processing to Artificial Intelligence (AI).29

Ada Is the Lav

"Ada," its advocates like to say, "not only makes good

programming sense, it's the law." This statement arises from the

FY 91 Appropriations Bill requiring that:

S...after 1 June 1991, where cost effective, all Department
of Defense software shall be written in the programming
language of Ada, in the absence of a special exemption by an
official designated by the Secretary of Defense30."

In drafting the language, the House Appropriations Committee

cited a number of reasons why enforcing the Ada mandate was

important. These included: training economies of scale arising

from a common language, Ada's constructs as building blocks for

disciplined software engineering, its internal checking which

inhibits errors in large systems, and its design which

facilitates and encourages reuse of already built and tested

program parts. However, the fundamental reason for this

legislation was Ada's encouragement of software engineering

the application of engineering discipline being seen as the only

currently feasible way to control software cost escalation in

29j. L. Diaz-Herrera, Artificial IntelliQence and Ada, March

1991, p 13.

30Fy 91 Appropriations Bill, Section 8092

24

ever larger and more complex systems.
31

The legislation also reflected the Appropriations

Committee's views that failure to fully incorporate Ada had

become a weak link in fielding new systems and that DoD's mandate

was not being enforced effectively. This law was intended to

improve and accelerate the use of Ada and add teeth to existing

DoD policy. In fact, the law went beyond the original mandate

and forces Ada to be used (or be specifically exempted for use)

in general purpose computer applications as well as those in

weapon systems.

The caveat of cost effectiveness in the Congressional

language, which some view as a loophole around the need to use

Ada, was inserted because it was felt that not all applications

can be done effectively in Ada. How cost effectiveness will be

defined has become an issue that will have to be clarified by new

DoD policy. This policy, by its very nature, will send a signal

to industry just how serious DoD is about keeping Ada for the

long term.

The DoD Mandate for Ada

The requirement to use Ada for DoD software existed long

before this recent legislation. Ada became a DoD standard in

31Appropriations Committee Report to the FY 91 Appropriations

Bill, p 45.

25

1980. Two directives published in 198732 established Ada as the

common programming language for Defense computer resources used

in intelligence systems, for the command and control of military

forces, or integral to weapon systems. Other languages were

authorized only where DoD did not have to develop or maintain the

software for the life of the system (Commercial Off The Shelf

software, COTS) or if a waiver could be obtained for reasons of

cost effectiveness or performance. This mandate turned out to be

less effective than originally hoped, for a number of reasons.

Difficulties Bringing Ada On Board

The perceived and real problems of introducing Ada have not

been insignificant. The cost of new compilers and other tools

necessary for software development in Ada had to be borne by

either the contractor or the program office. Both viewed

themselves as under pressure to cut costs for new programs in an

era of declining budgets and fixed price contracts. Compilers

and tools did not exist for several of the computer systems

developers either wanted or were directed to use, resulting in

delays and increased costs while these were developed. Some

existing compilers and tools were viewed with suspicion because

32DoDD 3405.1, Computer Programming Language Policy, April 2,
1987, and DoDD 3405.2, Use of Ada(tm) in Weapon Systems, March 30,
1987.

26

of early claims of performance that proved not to be true.33

Equally significant, the language was considered complex and

hard to learn, and there were few experienced programmers in Ada.

Because universities had yet to treat Ada as little more than an

elective for graduate level computer scientists, industry had to

invest in training and pay the high costs for the initial climb

up the learning curve. These factors, coupled with either weak

or no implementation guidance from the Services, gave the

impression that waivers were granted routinely or in some cases

that the requirement to use Ada had been set aside.

Renewed Commitment by DoD

In 1990, the Services strengthened their commitment to Ada.

The Air Force and the Army both issued amplifying policies that

reaffirmed Ada as the standard programming language for software

development and established the approval authority for waivers at

the service headquarters level: in the Air Force the Deputy

Assistant Secretary (Communications, Computers and Logistics) and

in the Army the Director of Information Systems for Command,

33The September 1987 Report of the Defense Science Board on
Military Software noted that Ada's complexity contributed to slow
maturation of its compilers and tools. As a result, Ada compilers
executed slowly in comparison to those for other languages. This
was viewed as a result of the compilers doing more checking and was
treated as something that should improve as engineering refinements
occur. The report also noted that the code generated by Ada
compilers was not yet highly optimized but that there were no
technical obstacles to achieving optimized code for applications
written in Ada.

27

Control, Communications, and Computers. The Navy's policy

requiring Ada was strengthened in September, 1990, when the

Assistant Secretary of the Navy for Research, Development and

Acquisition became the approval authority for all Ada waivers.

The effect was to toughen the process through which waivers are

granted and, in general, make waivers more difficult to obtain.

Other Recent Changes

Other changes have evolved as well. Many of the early to

mid 80s' problems in execution speed, large memory requirements,

and long compilation times associated with Ada occurred because

of the relative immaturity of Ada compilers. Over the past five

years Ada compilers and tools have improved and now have been

proven for virtually all commonly used developing environments

(Figure 9). As Ada use has increased, many of the problems

associated with early Ada performance have been corrected as

matters of course.

Use of Ada outside of the DoD has also demonstrated the

language's versatility. The FAA and NASA have selected Ada for

major projects and have written polices for the use of the

language similar to DoD's. The FAA is using Ada for development

of its Advanced Automation System which is to upgrade the

national airspace management system. This program alone will

develop over two million lines of Ada code. Similarly, NASA's

space station program is being done in Ada.

28

GROWTH OF VALIDATED COMPILERS
(JANUAPY 1, 1991)

600
519

500

400

300200

229200

143

0

DEC DEC DEC DEC DEC DEC NOV
1983 1984 1985 1986 1987 1988 1990

BASE COMPILERS
VALIDATED BY REGISTRATION SOURCE: AFCEA POC COURSE X139

MANAGEMENT OF ADA BASED SYSTEMS

Figure 9

Industry Acceptance

Privately, many companies report that the prospect of fewer

and fewer waivers, the Defense Appropriations Act language, non-

DoD and commercial growth in support of Ada, and new efforts

focused at applying total quality management to software

development have forced rethinking of their attitudes regarding

Ada. Many who were experimenting with Ada either commercially or

as part of independent research and development felt that this

experience was important to making or keeping them competitive in

the defense market. An equally important factor for some is the

29

extensive use of Ada overseas, particularly in Europe One

company mentioned that it viewed its admittedly small Ada

experienced staff as a particularly valuable resource since it

should enhance their ability to compete or team with other

companies in the overseas market.

The impact of these changes has affected the perceptions of

many in industry about the future of Ada. Many companies have

initiated Ada projects on their own because of an advocate in the

company or as a result of a DoD project. Several cases exist

where projects were developed in both Ada and another more

traditional language for comparison. Motorola, for example,

built a test system for cellular telephone switches in Ada that

was equivalent to a previous system developed in C language.

Motorola found dramatic improvements in both quality and

productivity which they attributed to Ada's facilitation of

software engineering principles. Other companies have said that

the supportability and maintainability of Ada offers advantages

that they have not found with other languages. A study of

commercial uses of Ada by the AJPO 35 found that integration and

testing was significantly reduced, error rates were lower, the

required development resources were lower, and the reuse of

34Ada has gained widespread acceptance in Europe. The reasons
are attributed to the high interest in advanced technology, the
proportionally greater number of program new starts, and a greater
willingness to use new programming languages. Additionally, NATO
has mandated the use of Ada and there is no waiver process.

35The Ada Joint Program Office, Tracking the Use of Ada in
Commercial Applications; Case Studies and Summary Report, 9 January
1988.

30

existing code was improved. These and other results dispelled

the fear of Ada that many have held.

According to a study by Focused Ada Research, 61 million

source lines of code have been developed or are being developed.

The market in Ada now approaches one and one-half billion dollars

annually36 .

Where is Ada Going?

Not surprisingly, apprehension remains that the DoD

commitment to Ada is short lived. Many in government and

industry have expressed concern that the impact on program costs

and schedules of a forced wholesale transition to Ada will be too

great. The advent of newer fourth generation and object oriented

programming languages also create the view that Ada is being left

behind as technology pushes ahead with newer ideas and methods.

It needs to be pointed out, however, that while Ada lacks several

of the features necessary to be a object oriented programming

language, it superbly supports object oriented design37 . Other

36From a briefing by Don Reifer, Reifer Consultants Inc., at
the Tri-Ada 90 conference in Baltimore, Md., December 3-7, 1990.
Other sources, including a market research report by the investment
firm of Branch Cabell and Company in Richmond, Virginia, put the
Ada market in the US in 1989 around $1B. The Branch Cabell report
estimated that the Ada market could grow to between $2.4B and $9B
by 1995 depending on how actively vendors pursue commercial markets
with Ada technology. They predict a 20% annual compounded growth
rate despite present and anticipated cuts in the Defense budget.

37An excellent discussion of Ada and object oriented
development is contained in the December 1990 issue of SIGNAL in an
article titled "Object-Oriented Development Aids Prototyping and

31

technical concerns are the limitations of Ada's interfaces to

open system components such as x-windows and Structured Query

Language (SQL) as well as inadequate handling of decimal

arithmetic for Management Information System (MIS) applications.

These are viable concerns which the standards community with

heavy DoD participation is striving to solve as is the AJPO

through its efforts in Ada technology insertion.

Another answer to these technical concerns is a program

known as Ada 9x. 9x represents the year in the 1990s that a

revision to the Ada standard will take effect. The goal is 1993.

The intent of the program is to select those changes that improve

the usability of the Ada language while minimizing the disruptive

effects of changing the standard38. Of primary importance will

be to preserve Ada's reliability, safety, and maintainability. A

substantial number of technical requirements have been proposed,

some have been accepted by a panel of "distinguished reviewers"

and others are still being studied. The inclusion of these new

requirements in 9x will strengthen Ada's position in the

marketplace.

Cultural Influences

The resistance to change is not just technical but largely

Delivery" by Dr. Marilyn Andrulis.

380ff ice of the Under Secretary of Defense for Acquisition, Ada
9x Proiect Report, Ada 9x Requirements (Draft), December 1990.

32

cultural. The software development community in this country has

evolved primarily around the assembly, FORTRAN, COBOL, and C

programming languages, resulting in vast amounts of code and

skills that exist in these languages. For example, it is

estimated that chere are roughly 100 billion39 source lines of

COBOL code in existence and use today. In contrast to Ada, these

languages have been in use for 30 years on the average and in

many ways reflect the "art and elegance" of software programming

(i.e. the ability to get the machine to do what is desired in the

least amount of time and space).

By comparison, Ada forces greater structure and requires

more time in the design phase of a program as seen in Figure

10.40 The longer time spent in design can create the impression

that more time and money are being spent with less results. This

situation is particularly troublesome when design reviews are

fixed and adequate time was not allowed for design. However as

Figure 10 shows, the longer design phase means less time is

usually spent later in coding, integration, and testing.

Another significant reason for the cultural resistance to

Ada is its continued lack of acceptance by academic institutions.

Universities do not build or maintain large systems but

39This number is based on estimates provided by several in
industry who pointed to the large COBOL installed base and skills
as a reason for the slow acceptance of Ada for MIS applications.

40From a briefing by Don Reifer, Reifer Consultants Inc., at
the Tri-ADA 90 conference in Baltimore, Md., December 3-5, 1990.
His briefing summarized conclusions derived in an analysis of 146
Ada projects from the US, Europe, and Asia.

33

concentrate
EFFORT ALLOCATION

primarily on
S0

small, single 50
50

use, PERCENTAGE 40
40

throwaway 35
OF 30

software
EFFORT 20 20

Universities 10

also 0 1-
REQUIREMENTS & CODE & INTEGRATION &

typically DESIGN UNIT TEST TEST

have limited * NON-ADA = ADA

funds for Figure 10: Distribution of Resources Related to
Effort

computers,

and costs to transition to Ada have traditionally been higher

than for development environments for other, more widely used

languages. Student demand for Ada courses has been small and

faculties generally are not familiar with Ada. Faculties teach

only what they know and use. Ada is considered a "DoD language,"

which in some sectors adds to its unpopularity. Most

importantly, industry has not demanded Ada skills. In

engineering and applied skills, colleges do not teach what they

perceive industry does not support. In turn, industry depends on

what universities teach to ease the up front investment and

transition costs. Many in industry feel Ada can not achieve wide

spread acceptance until it is taught widely in college.

34

The Future

Two statements sum up much of what has been said. The

first, voiced by a senior Air Force official is that "Ada is the

military standard for software development software

engineering principles and discipline are important, but industry

must employ Ada if they are to satisfy DoD needs41.'' The

second, from an industry representative, is that Ada hype has

painted Ada as fitting the DoD/Aerospace niche rather than the

high quality niche it deserves42.

These views imply Ada use is growing and will continue to

grow at a steady rate as a result of forces in both the

government and commercial sectors. Nevertheless, it is clear Ada

has not yet reached the critical mass necessary to assure the

acceptance it deserves. New compilers and tools, increased

emphasis on software engineering, quality and reliability in

software development, and the new standards created by the 9x

community are the hope for the future.

In a popular article on software engineering entitled "No

Silver Bullet," Fred Brooks says of Ada,

"I predict that a decade from now, when the effectiveness of
Ada is assessed, it will be seen to have made a substantial
difference, but not because of any language feature, not
indeed because of all of them combined. Neither will the
new Ada environments prove to be the cause of the
improvements. Ada's greatest contribution will be that

41Discussion with Maj Gen Albert J. Edmonds, Assistant Chief
of Staff Command, Control, Communications, and Computers, Hq USAF,
on November 26, 1990.

42Discussion with Mr. Douglas W. Waugh, Software Technology,
Federal Sector Division, IBM, on February 14, 1991.

35

switching to it occasioned training programmers in modern
software design techniques."

4Frederick P. Brooks, Jr., "No Silver Bullet, Essence and
Accidents of Software Engineering," IEEE Computer, April 1987, p
14.

36

Chapter 5
PROCESS MATURITY

"Quality comes not from inspection, but from improvement of the
process."

W. Edwards Deming
44

One problem that has hounded the software development

community has been how to predict with any reasonable certainty

the outcome of a project. As has been shown, this is vitally

important to the DoD given the investment and oversight

associated with software projects. Obviously, the tenants of

software engineering are a major force in reducing risk and

improving the predictability of software, and Ada is a powerful

tool that encourages and facilitates software engineering.

However, as most of those interviewed expressed, there is no easy

solution. Efforts within a company directed toward improving

quality and productivity were most frequently cited as how

predictability was being achieved and improved. Generally

speaking, these efforts were an outgrowth of broader programs

within those companies to introduce Total Quality Management

(TQM).

Concerned with this issue, the Air Force approached the SEI

in 1987 to develop a method to evaluate contractor proposals for

software development. Based on work by Watts Humphrey and

others, the SEI published a means to characterize the capability

4Mary Walton, The Deming Management Method, 1986

37

of software development organizations.45 The result was a

software process maturity framework that provides the DoD and

software organizations a way to assess their own capabilities and

identify the most important areas for improvement. This

framework is based on the software process and the principle of

software process management.

Software Process and Process Management

The software process focuses on the idea that 1) the process

of producing and evolving software can be defined, managed,

measured, and improved, and 2) the quality of software is largely

governed by the quality of the process to create and maintain it.

It considers the relationships of the required tasks, the tools

and methods, and the skills, training, and motivation of the

people involved.46

Software process management applies process engineering

concepts, techniques, and practices to monitor, improve, and

control the software process.47 Software process management

assumes that the development process is under statistical control

(meaning that if work is repeated in roughly the same manner it

45Watts S. Humphrey, Characterizing the Software Process: A
Maturity Framework, CMU/SEI-87-TR-1, June 1987.

46Watts S. Humphrey, David H. Kitson, Tim C. Kasse, The State
of Software Engineering Practice: A Preliminary Report, CMU/SEI-
89-TR-I, February 1989, p 5.

47ibid.

38

will produce approximately the same result). If it is, then

better results depend on improving the process. If it is not,

then no progress is possible until statistical control is

achieved.48

These views of the software process and process management

led to the development of a process maturity model and an

measurement methodology. Software process maturity is measured

though a questionnaire and interviews that determine where a

given organization's process resides on the model. The

measurement is in the form of an assessment or an evaluation

depending on the context. Each is explained in detail later.

Another essential part of this structure is a management system

for actually implementing the priority actions needed to improve

the organization.4s

The BEI Software Process Maturity Model

The software process is defined by SEI's process maturity

model. Five levels exist in the model (Figure 11). Each level

reflects a reduction of risk in software development and a

corresponding increase in the productivity and quality of the

48Watts S. Humphrey, CharacterizinQ the Software Process: A

Maturity Framework, CMU/SEI-87-TR-II, June 1987, p 1.

49ibid., p 2.

39

Level Characteristic Key Challenges Res ult i
Prdutvy

5 Improvement fed back Still human intensive process &rQua iity

into process Maintain organization at

Dptimizing optimizing level

4 (Quantitative) Changing technology

Measured process Problem analysis
Managed Problem perspective

Process measurement
(Qualitative) Process analysis

Process defined and Quantitative quality plans
Defined institutionalized

Training2 (Intuitive) Technical practices
Process dependent - reviews, testing

epeatable on Individuals Process focus
- standards, process groups

d hProject management
(Ad hoc/chaotic) Proiect planning

Initial Configuration management PISk
__ niti_____ Software quality assurance

Figure 11: SEI Software Process Maturity Model

outcome for any given project.50 The result is a commensurate

improvement in the predictability of that outcome as well.

Level 1 (Initial) represents a software process that is

generally labeled as ad hoc or chaotic and embodies an

unpredictable and poorly controlled development environment.

Usually, it is the entry level for most organizations. Formal

project controls may or may not exist, but if they do the

5 The discussion of the process maturity model is adapted from
a seminar by Judah Mogilenski, Contel Federal Systems, at the AFCEA
1991 Military/Government Computing Conference and two technical
reports by the SEI: The State of Engineering Practice: A
Preliminary Report, by W. S. Humphrey, D. H. Kitson, and T. C.
Kasse (CMU/SEI-89-TR-1, February 1989) and Characterizing the
Software Process: A Maturity Framework, by W. S. Humphrey
(CMU/SEI-87-TR-11, June 1987).

40

management mechanisms to insure controls are followed are

lacking. Projects at this level are frequently characterized by

large cost and schedule overruns. Organizations at this level do

have projects that succeed, but usually as a result of a

dedicated team rather than the capability of the organization.

Organizations that achieve level 2 (Repeatable) can

demonstrate basic project controls of project management,

management oversight, product assurance, and change control.

These organizations have a high degree of repeatability to

similar past projects but face high risks when taking on new

challenges. The increased risk reflects frequent quality

problems and lack of a structure for improvement.

Level 3 (Defined) defines a process in which standards are

institutionalized and the process is well documented and

formalized. organizations at this level have the foundation for

examining the process and how to improve it. The outcome of

projects can be forecast accurately across a broader range of

activities. Movement to the defined level depends on the

establishment of a Software Engineering Process Group (SEPG)

which is a group of software professionals within the

organization specifically chartered to focus on software process

improvement.

The ability to measure results, set goals for both quality

and productivity, and achieve those goals reflects level 4

(Managed). Predictability at this level has improved to a high

degree for projects as a whole and for each step along the way.

41

Level 5 (Optimizing) allows bottlenecks and weaknesses in

the process to be identified and used to focus improvement.

Idea2ly, data gathering at this stage is automated. This is a

proactive stage where the process is continuously modified based

on analysis and the introduction of new technology as it

contributes to further process improvement. Level 5 is called

"optimizing" instead of "optimized" because the software

development process at this level is always changing and

evolving.

Measuring Maturity and Process Improvement

The maturity of an organization's software development

process is defined in terms of one of the levels in the model. A

structured set of yes-no questions is used to determine an

organization's maturity level. The questions cover six to ten

prior projects. The areas evaluated include organizational and

resource management, the software engineering process and its

management, and the tools and technology used in the software

engineering process. A trained team validates the answers by

seeking concrete evidence of yes responses.

Software process assessments and software capability

evaluations are the measurement instruments used (Figure 12).

Although similar in form, the two are distinguished by the

purpose each serves.

42

Software Process Software Capability
Assessments Eva luatio ns

For Internal software For selection and

process improvement management of contractors

Results are given to purchaserResults are confidential

Assess process maturity Substantiate current processmaturity

Findings Identify Inhibitors
to Improving process Findings identify strengths
maturity and wealcnesses per maturity

model
Improvement team:

collaborative effort within Audit team: no contractor

organization members on team

Input to Improvement Action Plan Input for Award Decision, Contract
Monitoring or risk management

Figure 12

The Software Process Assessment

The software process assessment allows a company or

organization to understand its own software engineering practices

and identify areas for improvement. It is an in-house appraisal

of the organization's current software process done at the

request of senior management. The assessment is accomplished by

the organization itself, usually assisted by either the SEI or

one of nine SEI certified vendors. Two important aspects of the

assessment program are key to its success. First, the results

are confidential; restricted to the company or organization that

43

requests the assessment. More significant, however, is that the

assessment requires the commitment and active participation of

senior management. Assessments are exhaustive and costly in

terms of time and personnel (four team members must be provided

for about seven days to train and complete the assessment plus

complete access to all software professionals in the organization

must be granted during the two or three days the assessment

takes).

Regardless of the extent or quality of the assessment, it

accomplishes little unless a company makes the investment to

improve the process once the results are known. In this sense,

the assessment provides top management with a structured list of

strengths and prioritized improvement areas needed to improve its

software development capability. The development of a Software

Improvement Action Plan and a SEPG to implement the plan are

essential elements of this follow-up. The importance attached to

this program was voiced by many in industry who stated that

assessments are becoming fundamental tools to sustaining their

company's position in the DoD software market.

The Software Capability Evaluation

A software capability evaluation is similar to an assessment

except that it is externally driven. It is performed by the

government to determine the expected productivity, quality, and

risk of an upcoming or existing project. It is one of the

44

factors a source selection committee can use in the award of a

competitive procurement contract.

Software capability evaluations are starting to be used more

widely throughout the DoD; particularly in the award of large,

complex projects. Capability evaluations are now required by the

Naval Air Development Center for software contracts in excess of

one million dollars. The Army's Communications-Electronics

Command has drafted a policy requiring that bidders have

evaluations if the software for a project is expected to cost

more than 10 million dollars. The Air Force's Electronic Systems

Division (ESD) is considering a requirement for a process

improvement plan for contractors who have been evaluated with a

maturity level less than three.51

ESD recently advertised a Command Center Omnibus contract in

the Commerce Business Daily stating:

"...the software process capability of the responding
contractors will play a major role in the source selection
decision. ESD will use the Software Capability Evaluation
method developed by the SEI to recognize the current
software process capability of responding contractors.
Those contractors without a verifiable software process
improvement program leading to accomplishment of the 'Level
5' SEI-defined maturity level and an SEI-defined maturity
level of at least 'Level 3' will be viewed as high risk in
the source selection decision.,52

Partly because of the potentially widespread use of the

capability evaluations, the SEI is currently making some minor

revisions to the maturity model and the measurement methodology

51From a briefing at the SEI on their software process program,

SEI Visitors Day, February 21,1991.

52Commerce Business Daily, January 3, 1991, p 2.

45

to improve performance and risk prediction. The revised maturity

model will identify key issue areas and key practices required at

each maturity level. A revised questionnaire will sample the key

practices and provide areas of focus for the

assessment/evaluation teams. These changes are expected to be

published in the summer or fall of 1991.5
3

Results of Process Measurement

Process measurement provides a good barometer of where

industry is today in software development. The results of

assessments accomplished through the end of 1989 show that 74% of

the organizations assessed fell into level 1, 22% were level 2,

and remaining 4% fell into level 3.54 Only a select few, highly

specialized software development organizations approached the

requirements necessary for levels 4 or 5. SEI indicates that

those companies who have invested in the assessments have shown

increases in the maturity level with corresponding improvements

in quality and productivity. These results are supported by cost

performance data.55 Most of these companies are defense related

53Conversation with Dr. Willia m Curtis, SEI, May 23, 1991.

54Tutorial: Improving the Software Process, Tutorial
Proceedings, AFCEA 1991 Military/Government Computing Conference
and Exposition, Section 2, slide 23.

55From a discussion with Mark Paulk of the SEI. The SEI
collects data from assessments on a continual basis. However, this
data is highly confidential and is not releasable except in the
very generalized, aggregated sense that is reflected here.

46

but more and more commercial software developers have recognized

the value of this methodology and have begun to accept it as a

way to gain an advantage in a highly competitive market.

Cultural Factors in Process Improvement

The most dramatic and difficult changes in process

improvement are again cultural rather than technical. The

concept of process improvement is abstract, not something for

which a classic return on investment calculation is readily

available. Furthermore, process improvement competes for

resources with other "tangible" mission critical functions.

Process improvement and the resulting impact on quality and

reliability are totally a function of commitment from the top

down. To be effective the commitment must become an ongoing

cycle of

improvement

and

reassessment Ass Assessmen n

(Figure 13). Assearnett

An action rai

plan, n r

iAssessment

rea sesmen Cor orn itatmen

investmentsctsonment

and a long

term, Figure 13: The Software Process Improvement Cycle

47
in an IIII I

i n e t e t A' Io Pla,

constantly evolving strategy are necessary to reach and sustain

the top level of process maturity.

48

Chapter 6
SUMMARY/OBSERVATIONS

The software industry is a strategic industry essential to

the national defense. The national security strategy of the US

relies on technological superiority and improvements in the

reliability and quality of fielded software are vital elements in

maintaining that superiority. Efforts to reduce software costs

through increased maintainability, reuse, and portability are

equally vital as software's importance continues to grow.

Software engineering, Ada, and process maturity are the

mechanisms to achieve these goals.5 6

A New Era

This study provides the impression that the software

industry is beginning a new era. The problems of the past have

been recognized and there is widespread movement toward

strengthening productivity and quality in software development.

Although there is a long way to go, the results of process

measurements show the trend is improving. Not surprisingly, the

views of those in industry who are doing software development day

to day coincides with the more academic views found in the many

articles and technical journals that document the problems and

56The recently released 1992 Critical Technologies Plan for DoD
includes software engineering in the list of 21 technologies deemed
essential for maintaining the superiority of US weapon systems
(Aviation Week and Space TechnoloQy, May 20, 1991, p 57).

49

new technologies. The programs initiated by the Ada and STARS

Joint Program offices and the SEI have been a significant reason

software engineering in particular has advanced as far as it has.

Most of those interviewed agree that the most dramatic changes

have occurred in the past two to five years.
57

The study also revealed diverse opinions among software

professionals but two themes were predominant.

Education in Software Engineering and Ada is Key

Formal education in software engineering and Ada,

particularly at the undergraduate level, is key to their

widespread acceptance. As previously stated, much of the

resistance to Ada comes from its limited use by colleges which is

in turn linked to a perceived lack of demand by industry.

Similar comments were made about the development of software

engineering discipline.

Today, based on the comments of many who were interviewed,

much software engineering is ad hoc rather than a managed

discipline. The SEI has taken the lead in countering this trend

57Mary Shaw relates that it takes about twenty years to
introduce new technology into widespread use and advancements in
software development seem to have followed that trend (Beyond
ProQramming-in-the-Large: The Next Challenges for Software
Engineering, SEI-86-TM-6, May 1986, p 8). Software engineering is
recognized to be about twenty years old, Ada recently celebrated
its tenth birthday, and although the concept of software process
maturity is relatively new, its foundations lie in the TQM
management philosophy which dates back to the 1950s with Demming's
work.

50

by promoting software engineering education. The SEI has

developed a curriculum in software engineering and a transition

strategy that is aimed at both industry and academia.5 8 Over

the past two years, 27 universities, including the Air Force

Institute of Technology, have adopted all or part of the SEI

software engineering program. However, this work is currently

focused at the graduate level. Industry comments reflect that

software engineering practices will not become commonplace skills

until it is a fundamental part of an undergraduate computer

science degree. The Florida Institute of Technology (FIT) is one

of several schools that is aggressively working to develop such a

program. However, even with widespread acceptance outside of FIT

by both industry and other universities within the state, it may

take another seven years before FIT can graduate a person with an

undergraduate engineering degree in software engineering.5'

Continued support for efforts to push education for software

engineering is essential to shift general focus away from the

view that software development is merely coding and toward

58SEI's transition strategy is key to its professional
development program in software engineering. It requires creating
"transition agents" from academia and executives and middle
managers in industry and government. Their is to disseminate the
products SEI creates (courses, videotapes, textbooks, workshops,
etc.) to advance software engineering education tailored to meet
organizational needs.

59Dr. Charles Engle, FIT, says that many problems remain. For
one thing industry needs to specify what they really expect from a
software engineer. One fundamental problem industry faces is that
computer science graduates have little understanding of the
software life cycle beyond coding. Another problem is that many of
the underlying math and engineering principles for software
engineers are not yet fully developed.

51

increasing the collective understanding of the ertire software

life cycle. This attitude in turn highlights the need for

quality and rigor in the software development process--the very

foundation of the argument for Ada.

Using Ada as a core language from which to teach software

engineering is logical since Ada was built around software

engineering concepts such as modularity, abstraction, and data

typing. Both the SEI and FIT programs use Ada as a core language

to teach software engineering principles. Most important, Ada is

optimized for "programming in the large", i.e. it was designed to

develop large systems. One focus of the software engineering

discipline is that large software systems must be developed in

fundamentally different ways than small systems. That same

recognition must be created in education of future engineers and

computer scientists.

Debate Over Ada Continues

In spite of the mandates, Congressional action, and

successes, strong resistance to Ada remains. There are a wide

variety of reasons both technical and cultural. Most of these

issues have already been discussed, as have the efforts to

overcome them. The costs of training, investment in programming

environments, and the continued belief that DoD will grant

exceptions are the most apparent. The argument frequently voiced

was that DoD needs to be focused on the software engineering

52

process and not on the programming language which is largely

independent of the process.

Overwhelmingly, the forces promoting Ada are its use in

federal agencies outside the DoD and its increasing commercial

use, particularly overseas. One opinion expressed by a top

manager in GE Aerospace is that to be truly effective, Ada should

be mandated throughout the Federal government. Her view was that

the only technically valid reason for not using Ada is if the

required development or operational environment is not well

supported by Ada. 60 This type of reaction was commonly held by

those who had converted to Ada for one reason or another. Ada

9x, more than any single factor, was seen as determining Ada's

viability over the next several years. The need to openly

embrace object oriented programming and bindings to SQL and x-

windows were the two areas most frequently mentioned as essential

to Ada's future.

Ada's enforcement of software engineering principles was

also seen as a major factor improving productivity. Over and

over again the success of many software projects was attributed

to a small group of bright, highly talented programmers as the

core element of the project. Frequently, such a group was

preferred to a full staff even for large projects of a hundred

thousand lines of code or more. This is not surprising since

software construction is the product of a creative mind. Fred

0Interview with Cynthia Verbinski, GE Aerospace, January 15,

1991.

53

Brooks says that the difference between a great and an average

approach are an order of magnitude.61 The problem is that

building and sustaining this type of cadre is usually difficult

or impossible. From the comments received, good software

engineering discipline, and particularly the use of Ada, make

average or inexperienced programming staffs better able to

produce quality code. The structure and definition which forces

more work to be done up front translates into a better

understanding of the problem before the detail work is begun. In

one example, Harry Doscher of Motorola said that he was able to

have a summer student successfully translate and run test plans

written in Ada with little difficulty, something he could not do

with similar plans written in C.

Conclusion

As programs become bigger and more complex, quality,

maintainability, and reliability of the software have become more

pronounced in the overall life cycle cost of a system. The

principles of software engineering are at the heart of every

aspect, economic and managerial as well as technical, of how

these factors are achieved. The Ada programming language is a

powerful tool for bringing about a permanent change to modern

software techniques, but it suffers from an imbedded culture that

6 Frederick P. Brooks, Jr., "No Silver Bullet, Essence and
Accidents of Software Engineering," IEEE Computer, Vol 20, April
1987, p 18.

54

resists much of the rigor that Ada imposes. Process maturity

measurement provides a means to define how well software

engineering discipline has evolved within a company or

organization. The achievement of good software engineering is

fundamentally a leadership challenge. Experience shows that to

replace "cottage-industry" mentality and procedures at the

working level with disciplined, repeatable engineering processes

requires commitment, investment, and aggressive leadership.

55

Appendix 1
QUESTIONS

Over last three years what three languages has you company used
most to develop software for systems for government and
commercial applications?

Does your firm use Ada in its development?
How long has it been used?
Feelings about level of expertise?
For all development?
For government contract development only?
IR&D development?
For internal, commercial development?
Does Ada used for internal development conform to DOD-STD
2167A or DOD STD 1815?
What problems does this standard create?

How much are the availability and cost of adequate Ada tools a
factor in your decisions to use Ada or other languages?

What tools are/were not available to support your particular
program...if they can be/could be available would that
change your decision, why?

If so, what aspects led to the decision to incorporate?

If C, what was the original motivation to switch to C?

What sets development of telecommunications systems apart from
other software development such as weapon systems, MIS, etc.?

How do these factors play in the decision on which
programming language to use?
How is Ada viewed in this context?

Are you working on or aware of any communications project that
entails integrating commercial hardware/software into a larger
Air Force or DoD telecommunications system?

If so, what HOLs are being used in each and to what degree
is the integration of interface of the two a problem?
Is Ada a player or not?

What difficulty is there interfacing systems developed in
disparate higher order languages (HOL) does Ada help or
hinder this process?

Even though Ada is not mandated for commercial off the shelf
software do you think the government will ultimately require Ada
for any software purchase?

56

What are corporate policies on selection of programming
languages, for which development, e.g. commercial, IR&D,
government contract?

How much does the concept of software engineering factor into
your software development?

If it does is Ada viewed as the best vehicle to promote
software engineering or are other languages just as
good.. .which ones?
If not why not?
What are you doing to further software engineering

education?

Do you think the Europeans and Japanese have
endorsed/incorporated Ada to a greater degree than in the US, if
so why?

If so do you see them gaining any advantage in the long term
(or short term) as a result what disadvantages?

Do you see the DoD standing by its commitment to Ada or do you
thin,, that the mandate is so much posturing?

To what degree do you think the mandate will change in the
next 3-5 years..more stringent or less?
To what degree, if any, does this affect your decisions on
which HOL to use for other development?

What is your company's position on standardizing its programming
language for all new development?

If there is a desire to standardize what language is
preferred and why?
Do you expect this decision might change in the next 3-5
years?

What problems would you anticipate/occurred in transitioning to
Ada?

How do you expect to see these problems change in the
future?

What languages do you see new graduates trained in coming out of
school and how much does this affect your programming language
decisions?

If universities put greater emphasis on teaching Ada,
particularly if it were to become a core language, what
impact would this have?

How is object oriented development (OOD) changing programming
language decisions?

Do you see OOD as becoming more significant in development
decisions in the future?
What HOLs best support a change toward OOD and why?
How does this affect decisions toward Ada?

57

What changes do you see in the future that will influence
decisions positively or negatively toward greater
acceptance/dependence on Ada?

What recommendations would you like to see made to the Air Force
that would have the greatest impact on improving the current
development climate?

What advantages do you see from use of Ada?
Portability?
Software maintenance?
Software engineering attributes?

What disadvantages would you expect from transitioning to Ada?

What advantages exist with your present language?

How long has your company been using Ada?
As a design language?
As a development language?

Does your company conduct Ada training programs?
Does the program include software engineering concepts and
methods?

How much Ada specific equipment does your company have?

Of the cost to transition to Ada what percentage has gone for:
Training?
Software?
Hardware?
Other?

Has the government subsidized the transition in any way?
If not what should the government do to push Ada adoption?

Have you developed any Ada tools internally and if so what impact
has this had on your development in terms of time and/or cost?

What are they?

Has adoption of Ada offered any competitive advantage or
disadvantage?

Compared to similar systems implemented in other languages, what
do you expect to be the effect of the use of Ada on your software
sustaining direct labor costs: more, same, less?

What do you expect the use of Ada for the development of a system
will have on post-development software support costs: increase,
no change, decrease?

58

Are you aware of the SEI process maturity assessment and software
capability evaluation programs?

If so, how are they used or a factor in you company's
software development?
Have you had an assessment done (either in house or
SEI/vendor assisted)?
What was the reaction to the results?
Has your company set a maturity level as a goal and why?
What mechanism is in being to improve your process?
How do you view the capability evaluation as a factor in
source selection?

59

Appendix 2
SOFTWARE ENGINEERING PRINCIPLES

Abstraction: Manages complexity by extracting the essential
information while omitting non-essential details. An abstraction
is represented by each level of decomposition. It deals with
suppressing irrelevant problem-domain details.

Information Hiding: Makes inaccessible those details which do
not affect other parts of the system. It permits access to
certain data and operations while preventing access to others
that violate our logical view. It deals with encapsulating
solution-domain implementation details.

Modularity: Allows purposeful structuring by partitioning the
whole into manageable parts. It is achieved by designing
components which model physical reality.

Localization: Groups logically related entities and pulls
together the closely related data and operations so that they can
function more independently.

Uniformity: Assures consistency in notation and level and type
of design decomposition. It is achieved by eliminating
unnecessary differences and conforming to standards and
guidelines.

Completeness: Includes all elements necessary and sufficient to
meet requirements. It is supported by full and consistent
documentation and is accomplished by mapping the design and code
to the requirements.

Confirmability: Accomplished by building in the characteristics
necessary to prove that the system meets requirement and is done
in a way that aids testing and verification.

60

BIBLIOGRAPHY

Andrulis, M. D. "Object-Oriented Development Aids Prototyping
and Delivery," Signal, Vol. 45, No. 4, December 1990, p 76-78.

Ardis, M. and Ford, G. 1989 SEI Report on Graduate Software
Engineering Education. CMU/SEI-89-TR-21, June 1989.

Baker, C. "Army Encourages Software Integration." Defense News,
April 29, 1991, p 10.

Boehm, B. "A Spiral Model of Software Development and
Enhancement," IEEE Computer, May 1988, p 61-72.

Boehm, B. Software Engineering Economics. Prentice-Hall, Inc.,
1981.

Brooks, F. P., Jr. The Mythical Man Month. Addison Wesley
Publishing Co., 1975.

Brooks, F. P., Jr. "No Silver Bullet, Essence and Accidents of
Software Engineering," IEEE Computer, Volume 20, April 1987, p
10-19.

Carlson, M. and Smith, C. N. Understanding the Adoption of Ada:
Results of an Industry Survey. CMU/SEI-90-TR-10, May 1990.

Carroll, P. B. "Painful Birth: Creating New Software Was
Agonizing Task for Mitch Kapor Firm." The Wall Street Journal,
May 11, 1990, p Al, A7.

Cobb, R. H. and Mills, H. D. "Engineering Software Under
Statistical Quality Control." IEEE Software, November 1990, p
44-54.

Crafti, R. E. " A European Ada Case History--Interview with
Bengt Jorgensen." Ada Strategies, Vol. 3, No. 11, November 1989,
p 10-13.

Crafts, R. E. "FY 91 Appropriations Bill--Use Ada, Its the Law."
Ada Strategies, Vol. 4, No. 11, November 1990, p 1-4.

Crafts, R. E. "Motorola Using Ada for Commercial
Communications." Ada Strategies, Vol. 3, No. 7, July 1989, p 8-
14.

Curtis, B.; Krasner, H. and Iscoe, N. "A Field Study of the
Software Design Process for Large Systems." Communications of
the ACM, Vol. 31, No. 11, November 1988, p 1268-1287.

61

Diaz-Herrera, J. L. Artificial Intelligence and Ada.
Manuscript, Department of Computer Science, School of Information
Technology and Engineering, George Mason University, March 1991.

Doscher, H. "An Ada Case Study in Cellular Telephony Testing
Tools." Proceedings, Ada Europe 90, June 1990, p 24-35.

Garner, J. H., LCDR. Evolutionary Acquisition Revisited, A C2
Industry Study. Manuscript, AFCEA, January 15, 1991.

Goldberg, J. H. "The Pentagon's Software Crisis Jeopardizes Key
Weapon Programs." Armed Forces Journal International, June 1990,
p 60-61.

Hughes, D. "Next Generation Defense Programs Will Increase Use
of Ada Language." Aviation Week and Space Technology, March 28,
1988, p 60-61.

Humphrey, W. S. Characterizing the Software Process: A Maturity
Framework. CMU/SEI-87-TR-11, June 1987.

Humphrey, W. S. Kitson D. H, and Kasse T. C., The State of
Software Engineering Practice: A Preliminary Report. CMU/SEI-
89-TR-I, February 1989.

Lewis, T. G., and Oman, P. W. "The Challenges of Software
Development." IEEE Software, November 1990, p 9-12.

Mills, H. D.; Newman, J. R. and Engle, J. B., Jr. "An
Undergraduate Curriculum in Software Engineering." Proceedings,
Software Engineering Education, SEI Conference 1990, p 24-37.

Musa, J. D. and Everett, W. W. "Software-Reliability
Engineering: Technology for the 1990s." IEEE Software, November
1990, p 36-43.

Myers, E. D. "What the Countess Didn't Count On." Datamation,
February 1, 1987, p 32-36.

Quann, E. "10 Mistakes to Avoid When Taking On Ada Projects."
Government Computing News, June 10, 1988, p 73.

Reed, G. P. "Trends: Ada Use Increasing for MIS." Ada
Strategies, Vol. 3, No. 10, October 1989, p 7-10.

Reifer, D. J. "The Economies of Ada--Guest Column." Ada
Strategies, Vol. 4, No. 11, p 5-7.

Richards, E. "Pentagon Finds High-Tech Projects Hard to Manage."
The Washington Post, December 11, 1990, p Al, A6.

62

Richards, E. and Reid, T. R. "Mass Production Comes to
Software." The Washington Post, December 12, 1990, p Al, A16.

Richards, E. "Society's Demands Push Software to Upper Limits."
The Washington Post, December 9, 1990, p Al, A24.

Richards, E. "Writing Software: A Quirky, Labor-Intensive
Scramble." The Washington Post, December 10, 1990, p Al, A10.

Schlender, B. R. "How to Break the Software Logjam." Fortune,
September 25, 1989, p 100-112.

Siegel, J. A. L., et al. National Software Capacity: Near-Term
Study. CMU/SEI-90-TR-12, May 1990.

Shaw, M. Beyond Programming-in-the-Large. SEI-86-TM-6, May
1986.

Shaw, M. Education for the Future of Software Engineering.
CMU/SEI-86-TM-5, May 1986.

Shaw, M. "Prospects for an Engineering Discipline of Software."
IEEE Software, November 1990, p 15-24.

Shaw, M. Prospects for an Engineering Discipline of Software.
CMU/SEI-90-TR-20, September 1990.

Siegel, J.A.L.; Stewman, S.; Konda, S.; Larkey, P.; and Wagner,
W.G. National Software Capacity: Near Term Study. CMU/SEI-90-
TR-12, May 1990.

Smith, G. E.; Cohen, W. M.; Hefley, W. E.; and Levinthal, D. A.
Understanding the Adoption of Ada: A Field Study Report.
CMU/SEI-89-TR-28, August 1989.

Smith, G. N. and Carlson, M. Understanding the Adoption of Ada:
Results of an Industry Survey. CU/SEI-90-SR-10, May 1990.

Strassmann, Paul A. The Business Value of Computers. New
Canaan, Ct: The Information Economic Press, 1988.

Walton, M. The Deming Management Method. Putnam Publishing
Group, 1986.

Uhl, M. "Ada and the Tower of Babel." Forbes, August 27, 1984,
p 132.

Wood, W., et al. A Guide to the Assessment of Software
Development Methods. CMU/SEI-88-TR-8, April 1988.

63

The Ada Joint Program Office. Tracking the Use of Ada in
Commercial Applications; Case Studies and Summary Report.
Washington D. C., January 6, 1988.

Air Force Software Management Group (Hq USAF/SCW). Air Force
Software Management Plan. Washington D. C., 20 August 1990.

Air Force Studies Board. Adapting Software Development Policies
to Modern Technology. Washington D. C.: National Academy Press,
1989.

The Armed Forces Communications and Electronics Association.
1991 Military/Government Computing Conference and Exposition.
Tutorial Proceedings.

The Association for Computing Machinery, Inc. Proceedings, Tri-
Ada '90. December 1990.

The Commerce Business Daily, January 3, 1991.

Department of the Air Force. Deputy Assistant Secretary
(Communications, Computers, and Logistics). Action Memorandum:
Air Force Policy on Programming Languages (with attachment). 7
August 1990.

Department of Defense Directive 3405.1. Computer Programming
Language Policy. April 2, 1987.

Department of Defense Directive 3405.2. Use of Ada(tm) in Weapon
Systems. March 30, 1987.

Department of Transportation. Federal Aviation Administration.
Action Notice: National Airspace System (NAS) Software
Procedures. September 11, 1989.

Government Accounting Office. Embedded Computer Technology.
GAO/IMTEC-90-34, April 1990.

Government Accounting Office. Programming Language... Status,
Costs, and Issues Associated with Defense's Implementation of
Ada. GAO/IMTEC-89-9, March 1989.

Goodard Space Flight Center. National Aeronautics and Space
Administration. Ada and Software Management in NASA: Assessment
and Recommendations. Greenbelt, Md., March 1989.

Office of the Under Secretary of Defense for Acquisition. Ada 9x
Project Report, Ada 9x Requirements (Draft). Washington D. C.,
December 1990.

64

b .

Office of the Under Secretary of Defense for Acquisition.
Defense Science Board. Report of the Defense Science Board Task
Force on Military Software. Washington D. C.: Government
Printing Office, September 1987.

U. S. Congress. House. Committee on Science, Space, and
Technology. Subcommittee on Investigations and Oversight. Bugs
in the Program, Problems in Federal Government Computer Software
DeveloDment and Regulation. Washington D. C.: Government
Printing Office, September 1989.

U. S. Congress. House. Committee of Conference. Making
ApDropriations for the Department of Defense. Conference Report.
101st Cong., 2nd Session, October 24, 1990.

65

